Design of DCache Storage Resource Manager Implementation

Table of Contents

Purpose of this dOCUMENL.........cccuiiiiiiieiiie ettt e e st e e s eesnaee e neeees 2
INEFOAUCTION. ...ttt sttt st e et s e e beesaneeeeas 2
Source code, binaries and dOCUMENTAION ACCESS.eeertermmnneeeeeeeeeeeeneaeeeeeeeereenenaeaeeeeeeeeennns 3
Performance Profiling reSultS.........oocuiiiiiiiiiiieiiiie et 4
DIESCIIPLION ...ttt ettt et ettt e st e st e e st e e sabeeesabeeesabeeesbeeeansneaeees 4
Technology and arcChiteCtUre OVETVIEW........cccuuieeiuiieeiiieeeiieenieeenreeesreeeereeeeeeennsrreeeeeens 4
Generic vs. dCache specific SRM Code.........cccueeviiiiniiiiiiiiiiniieeieceee e 7
Dcache COnfigUIAtioN..........cooieiiuiiiiiiiieite ettt et e e et e eeaeee e 7
SRM-tO-StOrage INtEITACES.eevuvieeriiieeriiieeiieeeiiee ettt ettt e e e e e e e saaneeeees 7
Authorization of the users and OPErations............cevvueeeriieenieernieeeiieeeiieeeiiieeee e 8

SRIM OPCTALIONS. ...eeeuvieeiiieiriiieeeteeeeiteeeriteeseiteesstteestteessaeessseeessseeessseeassseesssseesnsseeesssnnnns 9
Common logic executed for all SRM Operations........c...ceceeeeeereeriveeeininieeennieeeenans 9
Types Of SRIM OPETAtiONS.ccueeeruiieeiieeeiiiieeiieeeitreeeieeesieeeereeesseeesseeseessssssneeeens 10
Implementation of the blocking operations in dCache SRM..............cccceevvvnniinneen.. 11
Implementation of the non-blocking operations in dCache SRM.................c.......... 12

SRM Scheduler and Jobs State tranSitions............cecueereerrieerieniieenienieeniieeeeiieeeenes 15
Persistence of the Srm Requests in database............ccoceeveiniiiniiniiiiiiniienieeeeee 17
Implementation of the main SRM Operations.............cccveeriuieeriieeeriieenieeeiieeeiireeeeeeenens 23
Common properties of the SRM Requests and File Requestsccoccvvveeeiinninineeen.. 23
STMPTEPATETOGEL .ceeeneeiieieiiiee et e e et e e s e ba e e e snbaaeeeeees 23
STMPIEPATETOPUL........eiiiniiiiiiiie ettt e st sb e e s s ibbeeeeeeeaes 26
SRIMCOPY ...ttt ettt ettt ettt et et ses e st esane et esaneeneesanee e e 30
SRMCopY in Pull MOAE......ccuviiiiiiieiiieeiie e et e e e 30
SRMCopY 1N puSh MOE.......coociiiiiiiiiiiiiiiieeeee e 34
STMBIINZONINE.cccviiieiiieeiie ettt te e etee e st e e sveeessbeeessseeesnnssaeeeeeannns 36
STMRESEIVESPACE. ...ceueeieeiiiieeiieeeite ettt et ett e st e e st e e sibeessabeesateesbaeeeenans 36
SRIMLS. ...ttt ettt ettt et e e at e bt esab e e bt e eab e e bt e e e aabbeeeenbbeeesanbaeeean 36
STMRIML ..ottt ettt et e ettt e e s bnnee e 37
dCache specific implementation of the SRM to Storage Interfaces.........c.ccccceveuveeeennnee. 37
AUTNOTIZATION. ...ttt ettt ettt e bt e s e eaee s 37
AbStractStoragelnterface.c.ueiviiiiiiiiiiiiei e 38
Other dCache Services developed specifically to support SRM...........cccceevviiniiinieniennne. 39
Gsiftp Transfer Manager, Http Transfer Manager and Copy Manager......................... 39

Design of dCache SRM Timur Perelmutov 1

PN MANAEZET.....ccouiiiiiiieieiiee ettt ettt e s st e e e e e 41

SPACE MANAZET.......eeiiiiiiiiieeiieeeite ettt ettt ettt e sttt e et eesabee e e e bbeeeeeeeeans 41
Appendix A. Dcache SRM COde StIUCIUTE.eeeriieeriieeriiieeriieeeiieeeireeeiteeeseireeeeeeeans 43
The dCache SRM COE tIEEeeeeriuiiiiiieiiiieeeiiiiee ettt ee et e e e e e e e eerreeeesnnnes 43
Srm module package by package break dOWN...........coevuvieviiiiiiiiiiniieiiiiieee e 43
dCache module code subtree related to SRMcoccovviiiiiiiiiiiiiiiieeeeeeeeces 47
Appendix 2. Messages used for SRM - DCache communication...........c.cceeevveeenveeeeennnnns 47
RETEIENICES. ...ttt ettt e 53

Purpose of this document

This document is intended to be read by the participants of the Design of dCache SRM
review. The goal of the review is to recommend how to improve the SRM
implementation so that it can satisfy the requirements of the LHC Experiments, OSG and
WLCG users of the dCache Storage System with concentration on how to increase the
performance and scalability of the product. The following requirement that needs to be
satisfied by dCache SRM was received from CMS and was later confirmed by Atlas: “All
SRM functions should scale to the limits of the hardware deployed, it should never be the
limiting factor. ““ The goal of the review is to recommend the implementation of the SRM
component of the dCache and not the rest of dCache.

The purpose of this document is to provide the readers with all the information necessary
to conduct the review. This documents describes SRM interface, technologies used to
implement SRM, basic architecture of dCache and role of various components of dCache
and how they are utilized by SRM. This documents provides references to relevant
documents and to dcache code repository from where all dCache source code including
code for dCache SRM can be obtained. The language of this document is not expected to
be of the conference level quality, its main purpose is to inform and not to impress.

Introduction

Storage Resource Managers (SRMs) are middleware components whose function is to
provide dynamic space allocation and file management and operations on shared storage
components on the Grid. To learn about the concepts and ideas of GRID, please review
the Anatomy and Physialogy of the GRID in these two papers: [16],[17]. SRMs support
protocol negotiation and a reliable replication mechanism. The SRM specification
standardizes the interface, thus allowing for a uniform access to heterogeneous storage
elements. The SRM standard allows independent institutions to implement their own

Design of dCache SRM Timur Perelmutov 2

SRMs. SRMs leave the policy decision to be made independently by each
implementation at each site. Resource Reservations made through SRMs have limited
lifetimes and allow for automatic collection of unused resources thus preventing clogging
of storage systems with “forgotten” files.

The storage systems can be classified on basis of their longevity and persistence of the
data they store. Data can be considered to be temporary and permanent. For example disc
caches might allow for spontaneous deletion of the files, while deletion of the file stored
in a robotic tape storage can be very problematic. To support these notions, SRM defines
three types of files and spaces: Volatile, Durable and Permanent. Volatile files can be
removed by the system to make space for new files upon the expiration of its lifetime.
Permanent files are expected to exist in the storage system for the lifetime of the storage
system, unless explicitly deleted by the user. Finally Durable files have a both the
lifetime associated with them and a mechanism of notification of owners and
administrators of lifetime expiration but can not be deleted automatically by the system
and require explicit removal.

SRM interface consists of the five categories of functions: Space Management, Data
Transfer, Request Status, Directory and Permission Functions. Among the functions
worth mentioning are srmReserveSpace which creates advanced space reservation with a
user specified lifetime, and identified by a unique space token. The space token can later
be utilized for storing files via srmPrepareToPut, srmPrepareToGet and srmCopy
functions. For example srmPrepareToPut will take the list of files, file sizes, list client
supported transfer protocols and space tokens. SRM interface utilizes Grid Security
Infrastructure (GSI) for authentications. SRM service is a Web Service implementation of
a published WSDL document. Fermilab SRM is based on and is an integral part of the
dCache Distributed Disk Cache coupled with Enstore Tape Storage System (SRM or
SRM code do not rely or depend on Enstore).

Source code, binaries and documentation access

dCache documentation and binaries are available at dcache web site at [9] . dCache is an
open source project, description on how to gain anonymous read only access to
subversion repository or to browse the repository using web interface is at [10]. Javadocs
of generic SRM code can be found at [14].

Design of dCache SRM Timur Perelmutov 3

Performance Profiling results

On January 26 I performed the profiling of the SRM code running in US CMS T1
production system running under relatively light load at the moment of testing. The
results are published at [13].

Description

Technology and architecture overview

dCache SRM as well as the rest of the dCache components is a java program , usually
executed with the Java Virtual Machine implementation by Sun Microsystem on Linux
OS.

dCache SRM is Web Service implementing two standards defined by Storage Resource
Manager V1.1 and Storage Resource Manager V2.2 specifications [1] ,[2]. SRM Web
Services run on top of httpg (https using GSI instead of TSL sockets). GSI which stands
for Grid Security Infrastructure is described in [3]. GSI protocol supports X509 based
authentication and delegation of X509 based credential. dCache implementation uses
Apache Tomcat [4] coupled with Apache Axis [5] as Web Service container containing
dCache SRM as its application. dCache SRM uses Globus project plug-ins for Tomcat
and Axis to make them aware of GSI Transport [8] .

dCache distributed application is build on top of Cells messaging system [6],[7] . Each
instance of the java process which is a part of dCache application is a “Domain” running
one or more “cells”. Cells can communicate with each other using messages. Message
can be send to its destination with the sender waiting for a reply in a synchronous or
asynchronous manner, or message can be send without sender waiting for a reply (one
way communication). Once cells are deployed and declared “well known”, than the
message sender does not need to concern itself with weather the message recipient is in
the same Domain, on the same host or in Domain running on a different host.

From the point of view of the dCache application, its SRM is a cell that communicates
with other components of dCache using cell messages. dCache SRM communicates with
and/or relies upon the following services (cells) in dCache distributed application:
gPlazma (authentication service), PnfsManager (Namespace and File Metadata service),

Design of dCache SRM Timur Perelmutov 4

Login Broker(transfer endpoint registry), Pin Manager, Space Manager, PoolManager
(client transfer request and HSM store/restore operations scheduler), Pool (dCache
Managed Disk Data Storage). [llustrating the above description, the diagram bellow
provides a high level architectural diagram of dCache SRM.

Design of dCache SRM Timur Perelmutov 5

SRMClient

w2
o
g
2,
)
~
Tomcat
| Axis
SEM Authorization
SRM Web Service
,,,,,,,,,,,,,,,, SRM RequestHandlers ==
Asynchronous | Synchronous
,,,,,,, Request Handlers | Request Handlers
Get Request Scheduler
SRM Request SRM DB
v
I SRM Cell dCacheAuthorization
Implements Implements
AbstractStorageElement SrmAuthofzation
gPlazma
PnfsManager
PoolManager
SpaceManager
SRM Suppor : Pool
dCache Services | PinManager
TransferManager LoginBroker

SRM Architectural Diagram.

Design of dCache SRM Timur Perelmutov 6

Generic vs. dCache specific SRM Code

dCache SRM is implemented as a generic product that communicates with underlying
storage though a well defined set of interfaces. Should it become necessary to implement
an SRM interface to a different Storage System, all of the general SRM code could be
reused without modifications, and only implementations of the SRM-to-Storage
interfaces would be needed. All of the Generic SRM code is in the dCache module called
“srm”. There is no dependency in SRM code on any dCache spec code. All of the dCache
specific code is located in dCache module called “dCache” with majority of the classes
located in java package diskCacheV111.srm.dcache.

Dcache Configuration

dCache SRM has a large number of the configurable parameters, that set during the
initializations with some of them modifiable during the runtime. All of these parameters
are properties of the org.dcache.srm.util.Configuration class. This class also knows how
to write itself into and read itself from an xml file. But this functionality is not used in
dCache.

SRM-to-Storage interfaces
The interfaces are located in org.dcache.srm package.

org.dcache.srm.SRMAuthorization — abstraction of the storage specific authorization
mechanism.

org.dcache.srm.SRMUser is interface is an instance of the authorization record or an
object that captures authorization decision by storage authorization mechanism
org.dcache.srm.AbstractStorageElement - main interface between SRM and underlying
storage.

The following callback interfaces are passed as arguments in AbstractStorageElement
functions. They are used for asynchronous notifications of completion of execution of the
functions.

org.dcache.srm.ReserveSpaceCallbacks

org.dcache.srm.AdvisoryDeleteCallbacks

Design of dCache SRM Timur Perelmutov 7

org.dcache.srm.PinCallbacks
org.dcache.srm.UnpinCallbacks
org.dcache.srm.PrepareToPutCallbacks
org.dcache.srm.CopyCallbacks
org.dcache.srm.PrepareToPutIlnSpaceCallbacks
org.dcache.srm.GetFileInfoCallbacks
org.dcache.srm.ReleaseSpaceCallbacks

Authorization of the users and operations

Storage specific implementation of the SRMAuthorization interface is passed the user
credential and it gives back a Storage Specific SRMUser instance. The only two
properties that SRM requiters is id and priority. Id has to be unique to the user and a
priority is a number that is higher for the higher priority users. This number is than used
by the SRM scheduler, when executing SRM Requests. Almost all methods of the
AbstractStorageElement take SRMUser as an argument, and the Storage Specific
implementation is responsible for interpreting the SRMUser and determining if the user
has permission to perform a particular operation. Another interface that Storage
Implementation provides is the org.dcache.srm.SRMUserPersistenceManager. This
object knows how to store the SRMUser Authorization record in a persistent storage and
how to retrieve the object using its id.

Diagram Bellow illustrates the authorization and authentication of the users by dCache
implementation of SRM Authorization and its interaction with gPlazma (main dCache
authorization mechanism).

LB [
dcache.kpwd
Get
userna
reque L= gridmap
DN/Role
—_— sername
SRM
Aut!‘lori Fontext gPlazmae—— . grid-vorolemap
zation u.1d Get
gid authz
AuthRecord rw info SAML Client

rootpath

Design of dCache SRM Timur Perelmutov 8

Caching of User's credentials and Authorization decisions

In order to optimize the performance and reduce usage of memory SRM always only
stores one copy of the user's credential (x509 cert) in memory. If the user performs more
than one operation simultaneously, SRM will detect that it already has the user's
credential and will make the following request to point to the same credential. If the
credential that is supplied with the following request has a longer lifetime, SRM will
substitute the credential stored with the new one for all requests by the same user. In
order to support the execution of the requests after the restart, and authentication
information to monitoring interface, SRM provides a persistent storage of the user's
credential. This is a combination of the database record and a local file.

In order to minimize the load on the Authorization service and improve the performance,
dCache implementation of the SRMAuthorization interface caches the
AuthorizationRecords for short (3 minutes by default) period of time, so if multiple
requests are executed simultaneously or in quick succession for the same user,
irregardless of the user requests rate gPlazma will be contacted only once every 3
minutes. Again, to support the execution of the requests after the restart and to provide
the authorization information to monitoring interface, SRM provides a database based
persistent storage for AuthorizationRecords, based on JPA (Java Persistence API).

SRM Operations

Common logic executed for all SRM Operations.

Once the client connects to the Tomcat server hosting SRM application, using TCP/IP
protocol, tomcat uses a org.globus.tomcat.coyote.net. HTTPSConnector from Globus
Cog FX kit to create an instance of the class that will handle the connection.
HTTPSConnector uses org.globus.tomcat.catalina.net.BaseHTTPSServerSocketFactory ,
which creates a wrapper around the TCP Socket which performs GSI version of SSL
Handshake, During this handshake the authentication protocol is negotiated and
credentials of the client and server are exchanged. All of this is handled by GSI
authentication code from the globus library. The special instance of the Tomcat Http
request Valve (a class that performs custom preprocessing of the http request before it is
passed to the tomcat hosted application or web server) extracts the GSI Credential from
the connected Gsi socket and puts it in the Http Request Context.

Design of dCache SRM Timur Perelmutov 9

Later the Http request is passed to Axis application in Tomcat, which interprets the Soap
message and and invokes one of the SRM Server Web Service implementation methods
with correctly filled arguments. Once these methods return, the return values are
converted to the Soap reply messages, which are embedded in the http reply, and axis
returns control back to Tomcat.

The classes that contain the srm methods called by Axis are
org.dcache.srm.server.SRMServerV1 and org.dcache.srm.server.SRMServerV2. All of
the public methods before executing the logic specific to each of the operations, perform
the following common tasks:

1. get user credential from the HttpRequestContext, that was previously put there by the
tomcat valve.

2. perform authorization using Storage Specific implementation of SrmAuthorization
interface

3. perform the requested action, if authorization is granted.
4. return the results.

In case of SRMServerV2, which implements all SRM V2.2 methods, the logic described
above is encapsulated in the private method “handleRequest”, which uses reflection to
find a handler class for each specific operation of srm v2.2 in org.dcache.srm.handler
package, so that the name of the handler class is exactly the name of the srm operation
invoked, but with first latter of the name capitalized. So if srm client invokes srmRm
method, the methods of the org.dcache.srm.handler.SrmRm class will be invoked to
satisfy this request.

Types of SRM Operations

From the point of view of SRM Server there are two types of the SRM operations.
Operations of the first type perform certain function on the server in one step web service
request/response communication and server returns the results of such operation without
changing the state of the SRM Server itself, while possibly making useful changes in of
dCache as a whole. Examples of such operations are a listing of a directory and a removal
of a file. We call these types of operations “blocking”.

Operations of the second type are performed by making a series of web service
invocations and lead to a creation of the session objects on the server side identified by

Design of dCache SRM Timur Perelmutov 10

the unique tokens. The server may continue to perform the requested operation initiated
by the first invocation, and the client may periodically poll the status of the operation
supplying the token as one of the arguments of the status Web Service Function. Example
of one of such operations is srmPrepareToPut. SRM Client issues an PrepareToPut
command for a file. SRM server returns the reply that contains the Status of the put
operations which is initially “Queued” and a “Request Token”, srm client starts
periodically poll the status of the “PrepareToPut” operation by issuing
getStatusOfPrepare ToPut command, supplying file name and token as its arguments. It
gets back the Status object, that continues to have “Queued” Status, but eventually
becomes “SrmSpaceAvailable”, and the TURL (Transfer URL) becomes available too.
After that SRM Client performs the transfer of local file into the server identified by
TURL . Than client notifies the SRM server that the transfer is complete by issuing the
PutDone command that signals the server that it can destroy the server side session object
and perform necessary cleanup and release of the temporary reserved resources. We call
this sort of operations “non-blocking”.

Design of dCache SRM Timur Perelmutov 11

Implementation of the blocking operations in dCache SRM

The implementations of the blocking operations are easy to understand. No threaded
programming or event notifications or callbacks are used. The code is the simple
sequence of actions that leads to either accomplishment of the requested action or a
(partial) failure, followed by the generation and return of the structured reply object or a
simple return. It is illustrated by the diagram on Picture 1..

SRM Client

Authorizatio

Srmcp issues a reque n and

(‘;. L4
SRM Web Service Server, receives and
interprets soap messages

0oap message over

Authenticati
on

o

2

v 'y

v AbstractStorageElement Interface, abstraction of General

= Storage Operations

o’

m A

dCache specific implementation of AbstractStorageElement,
translates srm requests into dCache specific operations
A
v
Underlying Storage dCache
Picture 1.

Design of dCache SRM Timur Perelmutov 12

Implementation of the non-blocking operations in dCache SRM

Implementation of the non-blocking srm operations is much more complex, and is
illustrated by Picture 2..

SRM Client @
Srmcp issues a reque pdp message over gsi

Authorization

ssl soket and
SRM Web Service Server, receives and interpretsy | Authenticatio
soap messages n
Srm Request is created
9 Request Scheduler, queues and executes request, retries
o in case of failures
n A
=
81) v
A
AbstractStorageElement Interface, abstraction of General
Storage Operations
A,
dCache specific implementation of AbstractStorageElement,
translates srm requests into dCache specific operations
Y
Underlying Storage dCache
Picture 2.

The initial call leads to the creation of the Srm Request, of a particular type. The Request
is a subclass of the org.dcache.srm.request.Request class, which is in its turn a subclass of
org.dcache.srm.scheduler.Job.

Once Job is created, it can be passed to the instance of the Scheduler object that will
execute the run method of the Job, using Scheduler's pool of threads. Execution of the run
method of Job leads to its transition from one state to another. This is repeated until the

Design of dCache SRM Timur Perelmutov 13

request reaches one of its final states. Some requests can contain a collection of the
FileRequests. Each of the FileRequest is a Job as well. FileReqeusts are executed by a
Scheduler as well. After initial request, clients starts to poll the status of the request
using the request token and optionally SURL(s) of (a) file(s) in the request. This is
translated in the invocation of the getRequestStatus methods of the concrete Request and
FileRequest instances. Client can change the state of the request, file request or cancel
the execution of the requests by issuing various srm commands (srmPutDone or
srmAbortRequest for example) . This again leads to the execution of the methods of
Request or FileRequests.

The concrete types of the requests and corresponding file requests, all of which are in the
org.dcache.srm.request package are:

BringOnlineRequest and BringOnlineFileRequest
CopyRequest and CopyFileRequest

GetRequest and GetFileRequest

PutRequest and PutFileRequest

ReserveSpaceRequest has no corresponding file requests.

A simplified class diagram describing the relationships between these classes is on
Picture 3. SRM Class Diagram

Design of dCache SRM Timur Perelmutov 14

SRMServerV1 SRM

SRMServerV?2

7/

Handler.srmRm |L

Handler.srmLs r,

Handler.srmMv

Job
—_
state Scheduler
0%
Run()

7AN

FileRequest I

N
AV —X~ AN l, [
CopyRequest FEQ ‘ﬁf&\ CopyFileRequest
GetRequest "\A = ‘l GetFileRequest
PutRequest ‘l PutFileRequest
1%
AbstractStorageElement |-
| | |
Dcache.Storage UnixFS.Storage xrootd.Storage
Picture 3. SRM Class Diagram
Design of dCache SRM Timur Perelmutov 15

SRM Scheduler and Jobs State transitions.

The states that SRM Job can assume are described by the instances of the
org.dcache.srm.scheduler.State class. Which of the state transitions are legal and illegal
can be deduced from the logic of Job.setState() method.

The initial state is Pending and the final State is one of the three: Canceled, Done or
Failed.

A somewhat incomplete diagram on Picture 4. SRM Scheduler Job's states and some of
the state transitions. gives an impression about the possible state transitions for SRM
Request and FileRequest. Execution of some of the instances of Jobs, depending on their
type can only assume a subset of these states.

SRM Scheduler is the class that keeps a pool of threads that are used for execution of the
instances of SRM Jobs. A detailed description of the Scheduler can be found in [11].

Design of dCache SRM Timur Perelmutov 16

Thread Available
in Thread Poo

dded, no threads

in thggad pool

Retry Timer

Expires
Thread Available

\

in Thread Pool
Non-Fatal |
Failure

Async Notification

Job Execufion Job Execution

Completed
Num Of Ready)lis Max

Failed of Lifetime
Expireg

Job Execution
Completed
Num Of Ready

Num Of Read less than Max

less than Maj

User set

Job Execution
is Canceled by
the User

status to

Running

User
Set Status or Lifetime

to Done
or Lifetime

Exoired -

Picture 4. SRM Scheduler Job's states and some of the state transitions.

Design of dCache SRM Timur Perelmutov 17

Persistence of the Srm Requests in database.

SrmRequests are persisted in a database. This allows SRM to server to continue
execution of the non-blocking SRM requests after restart. Another function of the
database storage for the request is data source for monitoring application SrmWatch,
which provides several web views on the current state of the SRM system as well as the
historic information about system. Using various views you could see details of an
individual srm request, its status and history of execution, you could see all the requests
submitted in a given time period as well as various statistical graphs. The query page is a
great search tool and results of a query can be displayed as both table and time diagram.

SRM in default configuration keeps the requests objects in memory as long as it has
memory to do so. Hence during normal operation it does not notice any updates to the
database. This is great for performance (no need to wait for the database to return the
data) but means that multiple SRM instances cannot use the database for communicating
with each other. This could be easily solved by making sure that each instance of SRM
does keep in memory only the requests it controls and updates. Another problem to
horizontal scalability is updates to existing requests that are sent to the srm that does not
control a particular request, but this could be handled by implementing a pier-2-pier
communication layer between the SRM instances that would forward such update
requests to the correct instance of SRM server within the same dCache.

I order to persist a request in a database we store the following objects in their
corresponding sql tables: User’s credential, User Authorization Record, Request, File
Request, and a set of dated State Transitions. The interfaces to the persistent storage are

org.dcache.srm.scheduler.JobStorage
org.dcache.srm.request.RequestCredentialStorage
org.dcache.srm.request.FileRequestStorage
org.dcache.srm.request.RequestStorage

and their sub interfaces for specific types of the requests and file requests (all are in
package org.dcache.srm.request.

Postgres specific implementations of these interfaces, using JDBC technology, are
located in package org.dcache.srm.request.sql.

Design of dCache SRM Timur Perelmutov 18

You can have a look at a specific example of the SrmWatch monitoring interface which is
using there records about the state stored in Database at [12].

Bellow are the ER Diagrams for SRM Get, Put, Copy, Bring Online and Reserve Space
requests and file requests:

getrequestshistory
o i i
ki i@
shateic] it
ramiforfimea intd
descripian varchar {A2672) gttrtq uests
- + id it
rrafabid L]
getreguests_protocaols - i
profacal warchar {3E72) lidetirme irel
raquastid [y] e it
ETOrTTAsAge warchar [A2672)
miadulerid warchar [I2672)
schadulerimestamp il
rrurnaket il
rmanrumoinetr il
|amtstatetr armiforfime 1]
cradarfalid L]
refrydaltaime i
shoudupdsereirydaitsima inkd srmjobstate
dascriplion warchar {I2672) [t = -
e— warchar |A0673) e e
st werchar (32672) il il
usarid it
getfilerequestshistory
- W — getfilerequests
jokid i > e id i@
stateicl it rendabid ined
ramiiorima intd crasioriima intd
descripiian warchar [I2672) lidairma {11
sista imd
aTOrTassage warchar {I2672)
mchadularid warchar {32673
schadularimeastamp imé
rurmoinety ined
it irtd
laststntetrasiioniime int8
raqueastid ined
cradantalid [y
mhauscods warchar {I2672)
=l warchar | I672)
furl warchar {JI2672)
il warchar [3DETE)
pirid warchar (XE72)

Design of dCache SRM Timur Perelmutov 19

putrequestshistory

o inks
jobid iniE
skaboid [y =]
rarsifiorime (a8
descripiion warchar (32672)

putrequests_protocols

profccol warhar PRS2
requestd L=

putfilereque stshistory
e Iy}
jobid ire=
stateid inE
rarsifiorime (a8
descripion wanchar (32672)

Y

srmjobstate

] Iy
skafie wanchar (XB6TZ)

Design of dCache SRM

putreguests
et {1y -]
refjobid ires
CREaAcrAms [[g--]
litsadirme In=
shaho ired
ATCITTICS 5208 wanchar {3267 Z)
schodulend wanchear (3257 Z)
schodulerimestamp {1y}
i {ly--]
TR MATECrar 1y}
| aes ks babolrars i B orA me: {ly--]
cnedenialid Ine=
refryceltafirme inkd
shouldupdatoretrydaltaime ined
descrpion warchar {32672
clieriross wanchar {32572
Stahscoda wainc har {3557 Z)
usend -]
putfilerequests
| Ines
reecefjobid irea
SISOl TRl Iy -]
lifefrme [y -]
shabo iréd
ATCTTICES 5208 warchar {325TZ)
schodulond varchar (25T
schoduoimestamp IneS
rasTicinedr [Iy-]
T8 MATROfredr {ly--]
laststatofrarsifonimea Nk
requestd irisg
credorialid [y -]
sEafmcocs wachar (32572
surl warchar (32572
o varchar (25T
filaid warchar (E0ETE)
parerifilond varchar (26T
Spacaresaryaonid warchar (325TZ)
slza IS
reterdonpalicy warchar (32672
accasslatercy warchar {32672)

Timur Perelmutov

20

copyrequestshistory
b in Ccopyrequests
etid ini2 3 ini
stabaid in2 raait obid Ing2
ransiticnime ing araationtma ini
dasaiption vanchar (3267Z) litatima I
staba intd
emomaziags varchar B2ETE)
gl el d sarchar (2ET)
sachadadid aitimastamp ini=
Pasmafiat inig
MmamLmeiatr inig
laststabatransiticnima ind
cradandalid ini
ratradl tanma ined
shaul dupdateratrsaitaime intd
oy pdi on sarchar (3EETE
dianthost warchar (26T srmjobstate
stahsooda sarchar (32672) el o iR
—-1 i sate vanchar (267Z)
oA varchar (3267
ratantcnpolicy warchar (3ZETZ)
A= abary sarchar (3ZETE)
copyfilerequestshistory
bor b iz copyfilerequests
|ckid ini2 = (=] inE
stabaid ini ragtjobidl ini
rangiticnime ing craaliont ma ink
desgiption vanchar (3ZETZ) litatima ing
satg inkd
TSR archar (32ET2)
schadidard sarchar (326TZ)
sohadidotimestamp indS
rasmofrat ini
mammotiatr ini
laststaratrangitionime ink
reatic ing
cradand alid ini
ahahacdd varchar 2ETE)
fromid warchar (32ETE)
tiisrl varnchar (32ETE)
Promdburd warchar (32T
(ot varchar (FEETE)
fromiccal path vanchar (2ETZ)
ol cazal paih warchar (26T
sz in
Promdiladd warchar (33673
tofilaid vanchar (32672
remotETaugEtd wanchar (32ETE)
rematafilaid archar (326TZ)
spaceresanalionid vanchar (3ZETZ)
transhar d wanchar (32T

Design of dCache SRM Timur Perelmutov

bringonlinerequestshistory
i intd
jaakaicl inw
wtabeid inté
fransifianime intd
descripfian warchar [32872)

bringonlinerequests_protocols

pratacal warchar {(32672)
ragqueastid int@

bringonlinefilerequestshistory

o id inwl
jabid in®@
=tateid in®@
fran sifion me intd
descriplion warchar {(32672)

Design of dCache SRM

bringonlinerequests
. i id inté
naxfabid int@
craa fantima intd
lide i int@
Eake inid
ArarmasTag e warchar (32672)
mchadubarid wardhar {I2672)
schadularimeastamgp intd
numalral inté
raxnumainat i
astets talra rnailion Sme intd
credanfalid int@
rafrydeiiatime intd
shauldupd atleralrydaltaime intd
dascripian wardhar {I2672)
cienfos warchar (32872)
=tatusoadea warchar (32672)
werid N
bringonlinefilerequests
s SR | intA
naxjabid inW
creafanfirme intd
lider i intA
Etate ind
Srfarmastage warchar {I2872)
e ubarid wardhar (I2672)
schedulerimeastamp int@
fiurna frale N
maxruma kel inw
laststatalransfonime Nt
régquasid intA
credenialid it
slaisoade warchar {32872)
muirl wardhar {32672)
il warchar {32672)
pirid warchar {(32672)

Timur Perelmutov

srmjobstate
—— o id intE

=tale wardhar (326872)
22

reservespacerequestshistory

¢ id

jobéd
siateid

transitioniime
description

inté
int&
inté
int8
varchar (3267T2)

Design of dCache SRM

reservespacerequests

<« id int&
nextjobd nitd
creationtime int8
etime inta srmjobstate
state intd > . id inité
EIONMEes s age varchar (32672} siate wvarchar (32672}
achedulend varchar (32672)
aschedulertmestamp nitd
numofratr nité
maxnumaofreir nitd
lasistatetransitiontima nts
credentialid nté
retrydeitatime nitd
shouldupdateretrydeltatime intd
description varchar (32672)
chenthost varchar (32672)
statuscode varchar [32672)
usend nt&
aizemniytes nitd
resenvationiifetime nts
spacetoken varchar (32672)
retentionpolicy varchar (32672)
accesalatency varchar (32672)

Timur Perelmutov 23

Implementation of the main SRM Operations

Common properties of the SRM Requests and File Requests

Srm Requests and File Requests, as it was explained above, are the objects created on the
SRM Server side that are used for storage of the state and executing of the non-blocking
SRM operations that, form the client point of view, require a sequence of the WS level
operations to complete. In dCache they have following commend properties and
behavior.

Each request have Unique Long ID, which is used as a v2.2 “token” to identify the
request. It also has a state. It has a lifetime. If the request does not reach the final state
“lifetime” millisecond after its creation, the request is “canceled”. A request has [a
reference to] the credential and the authorization objects. Requests that contain File
Requests have an array of FileRequests.

SrmPrepareToGet

SrmGetRequest and its SrmGetFileRequests is created as a result of the
SrmPrepareToGet (get in v1.1) WS operation, its status is queried using
SrmStatusOfGetRequest (getRequestStatus in v1.1), it can be terminated after successful
transfers using srmRelease (setStatus(“Done”) in v1.1) , and it can be aborted by
srmAbortRequest or srmAbortFiles.

SrmGetRequest is a container of SrmGetFileRequests, there is no preliminary actions that
need to be performed on behalf of all the files in the requests, so the SrmGetRequest is
not scheduled for execution, instead each of its SrmGetFileRequests is.

Diagram on Picture 5. provides a high level view of what dCache operations are
performed by the SrmGetFileRequest in order to satisfy client's
srmPrepareToGetRequest.

The list of the AbstractStorageElement methods and dCache Messages used is :

SRM AbstractStorageElement view dCache view

1 getFileInfo PnfsGetStorageInfoMessage

Design of dCache SRM Timur Perelmutov 24

SRM AbstractStorageElement view

canRead

2
3 pinFile

dCache view

AuthorizationRecord.UserC
anRead ||
AuthorizationRecord.Group
CanRead |l
AuthorizationRecord.World
CanRead

PinManagerPinMessage

getGetTurl

4
5 unpinFile
6

relies on periodic
LoginBrokerInfo retrieval
by “Is -binary” command.

PinManagerUnpinMessage

7
8
9

Design of dCache SRM Timur Perelmutov

25

‘ Srmcp) Grm Servefnfsﬂanagfim’[gnagfoOll\/lranag%Ogieanm@' Pool '

et
‘srm://ﬁo f‘E:port/c
. 'tlr , get pnfs
gsiftp,dcap) metadata
> Stage _Aind
” Pin File belect Read
» > Pool.
(stage if
Mark as needed)
“pinned”
< Pin
> file
Select A least bus _ Pool in Poo]
Door in specified Pin <
Prptocol, calculate TQRL 1o >
gsﬁtp://door/dlr/ ’)
afjd return it to cli giet Door Lisg
> new
I(gridftp
session
Data
Done] UnPin
- U\ Fil file
- npin rite in Pool
unpin

Picture 5.

Design of dCache SRM Timur Perelmutov 26

SrmPrepareToPut

SrmPutRequest and its SrmPutFileRequests is created as a result of the
SrmPrepareToPut (put in v1.1) WS operation, its status is queried using
SrmStatusOfPutRequest (getRequestStatus in v1.1), it can be terminated after successful
transfers using srmPutDone (setStatus(“Done”) in v1.1) , and it can be aborted by
srmAbortRequest or srmAbortFiles.

SrmPutRequest is a container of SrmPutFileRequests, and again there is no preliminary
actions that need to be performed on behalf of all the files in the requests, so the
SrmPutRequest is not scheduled for execution, instead each of its SrmPutFileRequests is.

Diagram on Picture 6. provides a high level view of what dCache operations are
performed by the SrmPutFileRequest in order to satisfy client's
srmPrepareToPutRequest.

The list of the AbstractStorageElement methods and dCache Methods or Messages used

1S ©

Design of dCache SRM Timur Perelmutov 27

SRM AbstractStorageElement view

PrepareToPutFile

if no space token is given and implicit
space reservation enabled:

2 srmReserveSpace
If space token is present

3 srmMarkSpaceAsBeingUsed
getPutTurl

dCache view

PnfsGetStoragelnfoMessage
(file)

PnfsGetFileMetaDataMessa
ge (parent(file) if not found:

PnfsGetFileMetaDataMessa
ge (parent(parent)) if not
found:

PnfsGetFileMetaDataMessa
ge (parent(....(parent(file)))

PnfsCreateDirectoryMessag
e(parent(parent(....))

PnfsCreateDirectoryMessag
e(parent(file))

diskCacheV111.services.spa
ce.message.Reserve

diskCacheV111.services.spa
ce.message.Use

relies on periodic
LoginBrokerInfo retrieval
by “Is -binary” command.

If we marked space for use

5 srmUnmarkSpaceAsBeingUsed

Design of dCache SRM Timur Perelmutov

diskCacheV111.services.spa
ce.message.CancelUse

28

SRM AbstractStorageElement view dCache view

If we reserved space: diskCacheV111.services.spa

ce.message.Release
6 srmReleaseSpace &

7
8
9

Design of dCache SRM Timur Perelmutov 29

(D

)|

rm://ho§¥paért/dir/’
et pnfs
“gsifég?dcapj C}ga%ga,
missing.
Directoriieq 3§ﬁ§?§?
- >
lect, A least busylp. Space.
Ty It
8°te H} Feot6ttis

Ll

det Door Li§

it
&lessi$h
/ /
Done Rgleas [
o nuse
> pace
Picture 6.
Design of dCache SRM

Timur Perelmutov

30

SRMCopy

SrmCopyRequest and its SrmCopyFileRequests is created as a result of the SrmCopy
(getin v1.1) WS operation, its status is queried using SrmStatusOfCopyRequest
(getRequestStatus in v1.1), it gets into the final state automatically upon completion of
the transfers without waiting for specific commands from the client , and it can be
aborted at any time by srmAbortRequest or srmAbortFiles.

SRMCopy is different from the srmPrepareToPut and srmPrepareToGet in the following
ways. It does not only prepare the storage system for the transfer of the data in or out of
it, it actually performs the transfer. In order to accomplish it, the system needs to play the
role of the srm client when talking to the second srm system, that is the source or the
destination of the data. Depending on the direction of the transfer the srm copy performs
different sequence of actions, so it makes sense to consider Copy in the pull an push
mode separately.

SRMCopy in pull mode

CopyRequest in the pull mode negotiates the transfer urls with the remote system using
srm prepareToGet function. It does it for all files in the request at once on the level of the
Request. The classes that implements the logic of the client are
org.dcache.srm.client.RemoteTurlGetterV1 and
org.dcache.srm.client.RemoteTurlGetterV2. As soon as a TURL for a given file becomes
available, individual CopyFileRequest is scheduled.

CopyFileRequest performs all the same actions that srmPrepareToPut does, with the
exception of calculation of TURL and giving it to the client. Instead it requests the
Storage System to perform the transfer itself, which is than scheduled and executed by
“RemoteGsiftpTransferManager” service in dCache.

Once the pool starts the mover that performs the transfer, SRM delegates client's
credentials to the mover, so that the pool can authorize itself on behalf of the user, with
the gridftp server serving the source file.

Diagram on Picture 7. provides a high level view of what dCache operations are
performed by the SrmCopyRequest and SrmCopyFileRequests in order to satisfy client's
srmCopyRequest in pull mode.

Design of dCache SRM Timur Perelmutov 31

The list of the AbstractStorageElement methods and dCache Methods or Messages used
1S

SRM AbstractStorageElement view = dCache view
getFileMetaData PnfsGetStoragelnfoMessage (file)
1
2 RemoteTurlGetterV2.run()
PrepareToPutFile PnfsGetStoragelnfoMessage (file)

PnfsGetFileMetaDataMessage (parent(file)
if not found:

PnfsGetFileMetaDataMessage
(parent(parent)) if not found:

PnfsGetFileMetaDataMessage (parent(....
(parent(file)))

PnfsCreateDirectoryMessage(parent(parent(.

.2)

PnfsCreateDirectoryMessage(parent(file))

if no space token is given and diskCacheV111.services.space.message.Res
implicit space reservation enabled: erve

2 srmReserveSpace
If space token is present diskCacheV111.services.space.message.Use
3 srmMarkSpaceAsBeingUsed

getFromRemoteTURL diskCacheV111.vehicles.transferManager.R
4 emoteGsiftpTransferManagerMessage

Design of dCache SRM Timur Perelmutov 32

SRM AbstractStorageElement view = dCache view

If we marked space for use diskCacheV111.services.space.message.Can
5 srmUnmarkSpaceAsBeingUsed celUse
If we reserved space: diskCacheV111.services.space.message.Rel
ease

6 srmReleaseSpace

Design of dCache SRM Timur Perelmutov 33

()

c
srm://ot

srm://h?ﬁﬁf¢ort/dil

¢

)¢

ﬁost:pox

A
>
»

srm

(

//otﬁgM Gg%gpor

“gsiftp)

:/¥i§&}a‘

et.
Executipn

TURL

%ﬁﬁfﬁﬁg
pace

\-4
p9]
(Dt

/7

:g/sthf’tpS:G/B/doorZ,< -

\-4

ar
STLE5
SPafce %mvelp n
nfo Tl E?
G re551 N
Eranif%r F(
omplete
2 & e
Coj -
Dggé -
Rgleasg
nuse
pace
Picture 7.
Design of dCache SRM Timur Perelmutov 34

SRMCopy in push mode

CopyRequest in the push mode negotiates the transfer urls with the remote system using
srm prepareToPut function. It does it for all files in the request at once on the level of the
Request. The classes that implements the logic of the client are
org.dcache.srm.client.RemoteTurlPutterV1 and
org.dcache.srm.client.RemoteTurlPutterV2. As soon as a TURL for a given file becomes
available, individual CopyFileRequest is scheduled.

CopyFileRequest delegates most of the work related to performing the transfer to
underlying storage system, which schedules and executes the transfer in
“RemoteGsiftpTransferManager” service in dCache. “RemoteGsiftpTransferManager” in
its turn perform many actions similar to the ones performed by srmPretareToGet.

Diagram on Picture 8. provides a high level view of what dCache operations are
performed by the SrmCopyRequest and StmCopyFileRequests in order to satisfy client's
srmCopyRequest in push mode.

The list of the AbstractStorageElement methods and dCache Methods or Messages used
is :

SRM AbstractStorageElement dCache view
view

1

1 RemoteTurlPutterV2.run()

W

putToRemoteTURL RemoteGsiftpTransferManagerMessage

Design of dCache SRM Timur Perelmutov 35

O OO C

L. R SORY 3 !
srm: //ho E.[Sort/dl ﬁe% ans RM. Put (1ok
srm://o% ﬁgost:pv etatata srm //otﬁe stipont i |

)J “gsiftp) Execiti

A
>

TURL$gsi ://door?2 é
| 2ii N

ta d
(¢ }sllgff]g‘getj

Star
- Bt
IPnlflo ove I‘g_ll t(P
< Bession
>

L Done

Unpin File

Coj
chipr%/e

Picture 8.

Design of dCache SRM Timur Perelmutov 36

SrmBringOnline

SrmBringOnlineRequest and its SrmBringOnlineFileRequests is created as a result of the
SrmBringOnline WS operation, its status is queried using
SrmStatusOfBringOnlineRequest, it can be terminated after successful transfers using
srmRelease , and it can be aborted by srmAbortRequest or srmAbortFiles.

SrmBringOnlineRequests and SrmBringOnlineFileRequests perform a subset of actions
that SrmGet[File]Requests do. SrmBringOnlineFileRequest checks permissions and it
pings the files, but it does not calculate and return a TURL and it does not wait for the
transfer to be performed by the client and it does not release the pins after the transfer.

SrmReserveSpace

SrmReserveSpaceRequest is created as a result of srmReserveSpace WS level operation,
its status is queried using SrmStatusOfReserveSpaceRequest.

This is the Request object that does not contain a set of the corresponding file request. Its
function is to reserve a space of specified size and with specified parameters.

SRM AbstractStorageElement view dCache view

diskCacheV111.services.spa

ce.message.Reserve
1 srmReserveSpace &

SRMLs

SrmLs could be implemented as a scheduled non-blocking operation, as it supports using
tokens for future references to the previously submitted Is request, but it is implemented
as a one step non-scheduled blocking operation in dCache SRM. SrmLs performs a
recursive listing of files and directories in the underlying storage namespace. It returns
back a brief or a detailed list of the namespace entries accompanied by their metadata.

Design of dCache SRM Timur Perelmutov 37

The depth of recursion and the level of details are controlled by the input parameters.

Bellow is the list of the AbstractStorageElement methods and dCache Methods or
Messages used is

SRM AbstractStorageElement view = dCache view

getFileMetaData PnfsGetStoragelnfoMessage (file)
1
2 listDirectoryFiles Localy mounted pnfs Is,isDir, etc.
SrmRm

SrmRm is a blocking non scheduled operation. It performs deletions of the of files in the
underlying storage namespace.

Bellow is the list of the AbstractStorageElement methods and dCache Methods or
Messages used is

SRM AbstractStorageElement view = dCache view
removeFile PnfsGetStorageInfoMessage (file)

PnfsDeleteEntryMessage(file)

dCache specific implementation of the SRM to Storage
Interfaces.

Authorization

Implementation of the SRMAuthorization is
diskCacheV111.srm.dcache.DCacheAuthorization. In most widely used configuration
DcacheAuthorization used gPlazma service to obtain authorization record. The message
sent to gPlazma is diskCacheV111.vehicles.X509Info and the result sent back is
diskCacheV111.vehicles. AuthenticationMessage. ultimately the result of the
authorization is the org.dcache.auth. AuthorizationRecord which implements SRMUser

interface.

Design of dCache SRM Timur Perelmutov 38

AbstractStoragelnterface

Implementation of the AbstractStoragelnterface is diskCacheV111.srm.dcache.Storage,
which is also a cell in dCache application. In addition of providing dCache specific
implementations to all of the AbstractStoragelnterface methods, it also contains
implementations of many of the admin functions exposed via dCache admin interface,
such as “Is” for listing of the pending srm requests, “info” for providing status
information, “cancel” for termination of a specific request.

diskCacheV111.srm.dcache.Storage relies on a large number “companion” classes for
communication with the other service of the dCache application. The companions are
implementation of the CellMessageAnswerable interface, which allows to send the
message to other service and receive the notification about the reply asynchronously, via
invocation of the CellMessageAnswerable.answerArrived method. Almost all of the
SRM Cell to dCache communication is build around this mechanism. Only methods that
are called from the synchronous SRM functions are implemented using synchronous cell
message exchanges via sendAndWait() calls. The implementation of the specific
AbstractStoragelnterface method ofter requires a series of message exchanges. In this
case companion behaves like a state machine, that changes state with each message
exchange stage accomplished until it reaches the final state, when it can notify SRM
about the success of failure of the specific operation, using the Callback interface passed
as an argument to the Storage method. This mechanism allows SRM code not to block a
thread while waiting other dCache services to reply, instead SRM returns the thread to
the thread pool and retrieves the thread only when more processing of the request on the
srm side is required. Please note that he state machines themselves are driven by a thread
pool separate from those used by the scheduler described on page 15 and that this thread
pool is shared by all implementations. Therefore the code inside these state machines is
minimal and mostly equivalent to sending a next message to a remote cell or rescheduling
the SRM request for execution and does not perform any blocking operations itself.

The companions used by diskCacheV111.srm.dcache.Storage are
AdvisoryDeleteCompanion
GetFileInfoCompanion

PinCompanion

Design of dCache SRM Timur Perelmutov 39

PutCompanion

PutInSpaceCompanion
ReleaseSpaceCompanion
RemoveFileCompanion
ReserveSpaceCompanion
SrmMarkSpaceAsBeingUsedCompanion
SrmReleaseSpaceCompanion
SrmReserveSpaceCompanion
SrmUnmarkSpace AsBeingUsedCompanion

UnpinCompanion

Other dCache Services developed specifically to
support SRM.

Gsiftp Transfer Manager, Http Transfer Manager and Copy
Manager

Transfer Managers accept requests for performing a Local or Remote File transfer into a
Local or Remote file.

Gsiftp can transfer to or from a remote gridftp server, Http Transfer Manager can only
transfer Files from remote Http servers into dCache. And Copy manager allows to copy
file internally from one local path into another (it uses dcap data transfer protocol for
pool to pool communication

All transfer managers have a similar logic.

When transfer request is for copy into a local file arrives, Transfer manager does the
following

1. Get parent Directory metadata using PnfsGetFileMetaDataMessage, check
permissions

Design of dCache SRM Timur Perelmutov 40

Create a namespace entry using PnfsCreateEntryMessage
Get file metadata PnfsGetStorageInfoMessage
Select pool using PoolMgrSelectWritePoolMsg

Start the mover on the pool using PoolAcceptFileMessage

A

once the pool replies with the Transferfinished, report the result by sending reply to
SRM.

When request is for copy from dCache into a remote server, the logic is a bit simpler
1. Get file metadata PnfsGetStoragelnfoMessage, check permissions

2. Select pool using PoolMgrSelectReadPoolMsg

3. Start the mover on the pool using PoolDeliverFileMessage

4

. once the pool replies with the Transferfinished, report the result by sending reply to
SRM.

In reality there are more messages sent around to support premature interruption of the
transfers. Also in case of GruidftpTransferManager and separate step for delegation of the
credentials from the SRM to the pool is needed.

In all cases the mover on the pool is playing a role of the (Gsiftp, http or dcap) client to a
remote system and it has itself a rather complex logic.

The code for the transfer manager cells can be found in
diskCacheV111.services.TransferManager
diskCacheV111.services.GsiftpTransferManager
diskCacheV111.doors.RemoteHttpTransferManager
diskCacheV111.doors.CopyManager

the code for the movers is in
diskCacheV111.movers.RemoteGsiftpTransferProtocol_1
diskCacheV111.movers.RemoteHttpTransferProtocol_1

diskCacheV111.movers.DCapClientProtocol_1

Design of dCache SRM Timur Perelmutov 41

Pin Manager
PinManager supports the following commands (messages):

PinManagerPinMessage — this creates the new pin on the file, and pins the file in the pool
if it is not pinned. It it is pinned by a different pin, it just adds the pin record and possibly
extends the pin in the pool.

PinManagerUnpinMessage — If the file has other current pins, the pin record will be
removed, while the file will remain pinned in the pool. If the file is not pinned anymore
by any other pin, the File is unpinned in the pool too.

PinManagerExtendLifetimeMessage — This operation results in the update of the lifetime
of the pin in the database and possibly on the pool.

PoolRemoveFilesMessage -This notification comes from the PnfsManager if the file was
removed from the namespace. In case of receipt of this message all records for file are
removed.

The table bellow summarized the PinManager to other dCache communication.

PinManager operation dCache view
PinManagerPinMessage PoolMgrSelectReadPoolMsg (pnfsid,
params)

PoolSetStickyMessage(on, pnfsid)

or just PoolSetStickyMessage(pnfsid,new
lifetime)

PinManagerUnpinMessage PoolSetStickyMessage(off, pnfsid)

PinManagerExtendLifetimeMessage PoolSetStickyMessage(pnfsid,new lifetime)

Space Manager

Somewhat outdated space manager design document can be found at 54. the code is in

Design of dCache SRM Timur Perelmutov 42

diskCacheV111.services.space java package, the messages are in
diskCacheV111.services.space.messages

Design of dCache SRM Timur Perelmutov

43

Appendix A. Dcache SRM Code structure

SRM Code Structure

There are three cvs modules in desy repository containing srm related code:

1. srm module contains pure srm code not related to any particular underlying storage

and unixfs/enstore implementation.

2. srmclient — client software -please see srm/doc/SrmClientCodeStructure.sxw for

details.

3. Sandbox contains dcache and dcache specific srm code.

The dCache SRM code tree

- handler
e lambdastation

P policies
e security

Legacy SRM V1.1 WS server code

Main SRM Interfaces

SRM and Gridftp client code
Axis specific client code

||

handlers for SRM V2.2 functions
Lambda Station code

Lambda Station QoS plugin
Terapath QoS plugin

SRM Get/Put/Copy/BOL requests
Persistence code for requests
SRM Requests Scheduler code
policies for Scheduler

Legacy security code

Axis SRM V1.1 and V2.2 servers
Demo Unix FS implementation
Various utility classes/config
Events

Axis Auto Generated code for V1.
Axis Auto Generated code for V2.

Srm module package by package break down

Package diskCacheV111.srm.* - stubs for srm v1.1 Web Services interface generated

Design of dCache SRM

Timur Perelmutov 44

1
2

with GLUE WS Toolkit from “The Mind Electric”. These can not be moved to different
package because it makes web service incompatible with other srm implementations and
older clients:

class ISRM.java — srm interface

classes FileMetaData.java, RequestStatus.java, RequestFileStatus.java -parameters and
return value types.

Please read http://sdm.lbl.gov/srm-wg/doc/SRM.spec.v2.1.final.pdf for details and
meaning of these.

Classes IInformationProvider.java StorageElementInfo.java — used for the
implementation of information service provider interface defined in the storage element
glue schema,

please see

http://www.cnaf.infn.it/~sergio/datatag/glue/v11/SE/GlueSE DOC V 1 1.html
for details.

class diskCacheV111.srm.server.Server — implementation of srm v1.1 server
-responsible for network connectivity, authentication and partial authorization and
passing parameters to org.dcache.srm.SRM class.

Package org.dcache.srm.* - major srm internal interfaces and classes
Logger.java -logger interface, extended by AbstractStorageElement.java
SRMUser.java — abstraction of the storage specific user class
AbstractStorageElement.java - interface between srm and underlying storage.

The following callback interfaces are passed as arguments in AbstractStorageElement
functions. They are used for asynchronous notifications of completion of execution of the
functions.

ReserveSpaceCallbacks.java

AdvisoryDeleteCallbacks.java

Design of dCache SRM Timur Perelmutov 45

http://sdm.lbl.gov/srm-wg/doc/SRM.spec.v2.1.final.pdf
http://www.cnaf.infn.it/~sergio/datatag/glue/v11/SE/GlueSE_DOC_V_1_1.html

PinCallbacks.java
UnpinCallbacks.java
PrepareToPutCallbacks.java
CopyCallbacks.java
PrepareToPutlnSpaceCallbacks.java
GetFileInfoCallbacks.java
ReleaseSpaceCallbacks.java

Exceptions:
SRMException.java
SRMAuthorizationException.java - ...
BadSRMObjectException.java — added by Leo
SRMAuthorization.java — abstraction of the storage specific authorization
mechanism.

Srm class contains one function for each srm v1 and srm v2 specified function, it is
responsible for either creating and scheduling srm requests or directly executing srm
functions, which do not require scheduling. Execution of these functions will eventually
lead to execution of the functions of the AbstractStorageElement implementation.

Package org.dcache.srm.security.*

SslGsiSocketFactory.java — implements socketfactory interface from Glue and is used for
gridifying Glue http server and client. (Various grid server and regular sockets are inner
classes of SslGsiSocketFactory.java).

Tomcat*java classes are used for gridyfying tomcat server (used for running axis servlet,
which is in its turn is used for running srm v2.1 WS (Web Services) server).

Package org.dcache.srm.scheduler.* contains an srm scheduler implementation. Please
see SRM.Request.Scheduler.Design.sxw in srm/doc directory for details.
SRM.Request.Scheduler.Design.sxw was written before the implementation commenced
and does reflect general principals though many details are incorrect.

scheduler/Scheduler.java is the main class that is responsible for scheduling

scheduler/Job.java abstract class representing the job that needs execution
scheduler/State.java instances of this type represent various states jobs can assume

Design of dCache SRM Timur Perelmutov 46

scheduler/ModifiableQueue.java - utility class representing queue
scheduler/JobStorage.java - interface, implementation of which will provide persistent
storage for jobs, Scheduler knows how to restore previously saved jobs from the instance
of JobStorage upon restart.

scheduler/JobCreator.java interface that represent the owner of the job, job creator has
a priority and might have certain number of jobs in the queues or running in the
scheduler. These numbers are taken in consideration when next job is selected for the
execution.

scheduler/, scheduler/NonFatalJobFailure.java — job execution method (run()) can throw
these exceptions. if NonFatalJobFailure is thrown, job execution is retried after a
predefined period of time (up to max num. of retries). Otherwise if FatalJobFailure is
throws, job is “Failed”.

scheduler/JobCreatorStorage.java interface of class that provides persistent storage
for Job creators.
scheduler/JobldGenerator.java -

Sample implementations:
scheduler/HashtableJobCreatorStorage.java
scheduler/SimpleldGenerator.java
scheduler/HashtableJobStorage.java
Internal classes:
scheduler/StateChangedEvent.java
scheduler/JobStorageAddedEvent.java

scheduler/IllegalStateTransition.java

Package org.dcache.srm.request* contains implementations of various srm request

types as subclasses of scheduler Job, so that they can be executed by srm scheduler

Package org.dcache.srm.request.sql.* contains persistent storages for these requests.

Package org.dcache.srm.client.* srm client libraries.

Package org.dcache.srm.v2_1 srm v2.1 interface stubs generated using apache axis

Design of dCache SRM Timur Perelmutov 47

wsdl2java tool (done by Leo)

Package org.dcache.srm.server — srm v2.1 server libraries

dCache module code subtree related to SRM

P movers
P services
P authorization
P classes
e gplazma

e gplazmalite
e vo-mapping
e endorsed

P vehicles
t———— transferManager

dCache Doors (control channels)
dCache Movers (data channels)

old gPlazma code
||
||
||
,ll,
||
,ll,
||
SRM Space Manager
SRM Space Manager messages

dCache implementation of SRM
interfaces

dCache communication messages
messages for TransferManagers

Authorization Records
gPlazma code
Persistence for Auth Records

SRM Pin Manager

Appendix 2. Messages used for SRM - DCache

communication

Design of dCache SRM

Timur Perelmutov 48

SrmPrepareToGet

1|getFilelnfo PnfsGetStoragelnfoMessage
AuthorizationRecord.UserCanRead ||
AuthorizationRecord.GroupCanRead ||

2|canRead AuthorizationRecord.WorldCanRead

3|pinFile PinManagerPinMessage
relies on periodic LoginBrokerInfo retrieval by fs -binary”

4/\getGetTurl command.

5|unpinFile PinManagerUnpinMessage

Design of dCache SRM Timur Perelmutov 49

SrmPrepareToPut

[

PrepareToPutFile

PnfsCreateDirectoryMessage(parent(file))

N

if no space token is given
and implicit space
reservation enabled:
srmReserveSpace

diskCacheV111l.services.space.message.Reserve

w

If space token is present
srmMarkSpaceAsBeingUsed

diskCacheV111.services.space.message.Use

N

getPutTurl

relies on periodic LoginBrokerInfo retrieval by fs -binary’
command.

When PutDone called
or Requestexpires:
GetFileMetaData

(depends on the SRMUser instance)

3. PoolMgrQueryPoolsMsg + GetCachelLocations
if storage info is unknown

4. GetFileSpaceTokens

Ul

If we marked space for use
srmUnmarkSpaceAsBeingUsed

diskCacheV111.services.space.message.CancelUse

[*))]

If we reserved space:
srmReleaseSpace

diskCacheV111.services.space.message.Release

Design of dCache SRM

Timur Perelmutov

50

SRMCopy (Pull mode)

PnfsGetStoragelnfoMessage (file)

[

getFileMetaData

N

RemoteTurlGetterV2.run()

PnfsCreateDirectoryMessage(parent(file))

w

PrepareToPutFile

ifno space token is given
and implicit space
reservation enabled:
srmReserveSpace diskCacheV111.services.space.message.Reserve

N

If space token is present

5|srmMarkSpaceAsBeingUsed diskCacheV111.services.space.message.Use
diskCacheV111l.vehicles.
6/getFromRemoteTURL transferManager.RemoteGsiftpTransferManagerMessage

If we marked space for use
srmUnmarkSpaceAsBeingUsed |diskCacheV111l.services.space.message.CancelUse

~N

If we reserved space:
srmReleaseSpace diskCacheV111.services.space.message.Release

0]

Design of dCache SRM Timur Perelmutov 51

SRMCopy (Pushl mode)

1 |RemoteTurlPutterV2.run()

2 |putToRemoteTURL RemoteGsiftpTransferManagerMessage

3|SRMReserveSpace

4|srmReserveSpace diskCacheV111.services.space.message.Reserve
SRMLs
PnfsGetStoragelnfoMessage (file)
1|getFileMetaData

2|listDirectoryFiles Localy mounted pnfs Is,isDir, etc.
SrmRm
PnfsGetStoragelnfoMessage (file)
PnfsDeleteEntryMessage(file)
1iremoveFile

Design of dCache SRM Timur Perelmutov 52

PinManager Messages

PoolMgrSelectReadPoolMsg (pnfsid, params)
PoolSetStickyMessage(on, pnfsid)
or just PoolSetStickyMessage(pnfsid,new lifetime)

[

PinManagerPinMessage

PoolSetStickyMessage(off, pnfsid)

N

PinManagerUnpinMessage

PinManagerExtendLifetimeMessa
3ige PoolSetStickyMessage(pnfsid,new lifetime)

Design of dCache SRM Timur Perelmutov 53

References

[1] Storage Resource Manager Working Group http://sdm.Ibl.gov/srm-wg/

[2] SRM V2.2 http://sdm.Ibl.gov/srm-wg/doc/SRM.v2.2.070402.html

[3] GSI Overwiew: http://www.globus.org/security/overview.html

[4] http://tomcat.apache.org/

[5] http://ws.apache.org/axis/

[6] http://trac.dcache.org/projects/dcache/wiki/cell

[7] http://www.dcache.org/manuals/cells/docs/index.html

[8] http://dev.globus.org/wiki/CoG FX GSI

[9] http://www.dcache.org/

[10] http://trac.dcache.org/projects/dcache/wiki/manuals/workWithdCacheSVN

[11] SRM Request Scheduler design
http://home.fnal.gov/~timur/srm/SRM.Request.Scheduler.Design.pdf

[12] SRMWatch monitoring interface to US CMS T1 dCache SRM system in Fermilab
http://cmsdcam3.fnal.gov:808 1/srmwatch/

[13] Results of profiling of US CMS T1 production SRM (dCache 1.9.0-5 ON Mon Jan
26 2009) http://home.fnal.gov/~timur/srm/CMS.SRM.Profiling/

[14] SRM Code Javadocs http://home.fnal.gov/~timur/srm/doc/javadoc/index.html

[15] Srm Space Manager design http://svn.dcache.org/WebSVN/filedetails.php?

repname=dCache&path=%2Ftrunk%2Fmodules%2FdCache
%2FdiskCacheV111%2Fservices%2FSpaceManagerDesign.doc

[16] The Anatomy of the Grid
http://www.globus.org/alliance/publications/papers/anatomy.pdf
[17] The Physiology of the Grid
http://www.globus.org/alliance/publications/papers/ogsa.pdf

Design of dCache SRM Timur Perelmutov 54

http://svn.dcache.org/WebSVN/filedetails.php?repname=dCache&path=%2Ftrunk%2Fmodules%2FdCache%2FdiskCacheV111%2Fservices%2FSpaceManagerDesign.doc
http://svn.dcache.org/WebSVN/filedetails.php?repname=dCache&path=%2Ftrunk%2Fmodules%2FdCache%2FdiskCacheV111%2Fservices%2FSpaceManagerDesign.doc
http://svn.dcache.org/WebSVN/filedetails.php?repname=dCache&path=%2Ftrunk%2Fmodules%2FdCache%2FdiskCacheV111%2Fservices%2FSpaceManagerDesign.doc
http://home.fnal.gov/~timur/srm/SRM.Request.Scheduler.Design.pdf
http://www.globus.org/alliance/publications/papers/ogsa.pdf
http://www.globus.org/alliance/publications/papers/anatomy.pdf
http://home.fnal.gov/~timur/srm/doc/javadoc/index.html
http://home.fnal.gov/~timur/srm/CMS.SRM.Profiling/
http://cmsdcam3.fnal.gov:8081/srmwatch/
http://trac.dcache.org/projects/dcache/wiki/manuals/workWithdCacheSVN
http://www.dcache.org/
http://dev.globus.org/wiki/CoG_FX_GSI
http://www.dcache.org/manuals/cells/docs/index.html
http://trac.dcache.org/projects/dcache/wiki/cell
http://ws.apache.org/axis/
http://tomcat.apache.org/
http://www.globus.org/security/overview.html
http://sdm.lbl.gov/srm-wg/doc/SRM.v2.2.070402.html
http://sdm.lbl.gov/srm-wg/

	Purpose of this document
	Introduction
	Source code, binaries and documentation access
	Performance Profiling results
	Description
	Technology and architecture overview
	Generic vs. dCache specific SRM Code
	Dcache Configuration
	SRM-to-Storage interfaces
	Authorization of the users and operations
	Caching of User's credentials and Authorization decisions

	SRM Operations
	Common logic executed for all SRM Operations.
	Types of SRM Operations
	Implementation of the blocking operations in dCache SRM
	Implementation of the non-blocking operations in dCache SRM
	SRM Scheduler and Jobs State transitions.
	Persistence of the Srm Requests in database.

	Implementation of the main SRM Operations
	Common properties of the SRM Requests and File Requests
	SrmPrepareToGet
	SrmPrepareToPut
	SRMCopy
	SRMCopy in pull mode
	SRMCopy in push mode

	SrmBringOnline
	SrmReserveSpace
	SRMLs
	SrmRm

	dCache specific implementation of the SRM to Storage Interfaces.
	Authorization
	AbstractStorageInterface

	Other dCache Services developed specifically to support SRM.
	Gsiftp Transfer Manager, Http Transfer Manager and Copy Manager
	Pin Manager
	Space Manager

	Appendix A. Dcache SRM Code structure
	The dCache SRM code tree
	Srm module package by package break down
	dCache module code subtree related to SRM

	Appendix 2. Messages used for SRM - DCache communication
	References

